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Abstract

We study a discounted repeated inspection game with two agents and one principal.

Both agents may pro�t by violating certain rules, while the principal can inspect on

at most one agent in each period, in�icting a punishment on an agent who is caught

violating the rules. The goal of the principal is to minimize the discounted number of

violations, and he has a Stackelberg leader advantage. We characterize the principal's

optimal inspection strategy.

1 Introduction

Inspection games model situations in which a principal veri�es that some agents adhere

to certain legal rules. Each agent may bene�t from violating the rules, yet by doing so he

faces a penalty if the violation behavior is observed by the principal. Such situations are

prevalent in modern life; for example, the tax authority audits tax payers, and the environ-

mental protection agency inspects on �rms who produce air or water pollution. Typically the

resources of the inspection agencies are limited, hence they cannot inspect on all agents at

all times. Consequently, the question regarding the identi�cation of the optimal inspection

scheme arises.

One way to deter agents from violating the rules is by imposing an enormous �ne for

every detected violation. Nevertheless, as noted by Harrington (1988), in reality the �nes of

discovered violations is typically low. The reasons involve legal constraints (in most states

in US there is a restriction on the size of penalties that can be levied on a �rm each day) and

ethical considerations (Becker (1968)). Moreover, if the adjudication is not perfect, a large

�ne may cause very high loss on social welfare since innocent inspectees can be convicted
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(Franzoni (2000)). Therefore, it is reasonable to treat the amount of �ne as an exogenous

variable and address the following question: given the �xed penalty level and the limited

inspection resources, what is the optimal inspection scheme?

A large literature on optimal auditing strategies is static (e.g., Reinganum and Wilde

(1985), Cremer, Marchand, and Pestieau (1990), Sanchez and Sobel (1993)). These authors

restricted the probability of audit to be independent of a taxpayer's previous compliance

history (although this probability can be contingent on the taxpayer's reported income).

Landsberger and Meilijson (1982) �rst proposed a dynamic state dependent inspection

scheme in auditing, which can attain a more e�cient use of resources compared with the

static schemes. This scheme audits individuals, who discounts future payo�s, with di�erent

probabilities depending on their compliance history. An agent who is inspected and found

adhering is assigned to state 1(where he faces low inspection probability) and an agent who

is found violating is assigned to state 2 (where he faces high inspection probability). Under

this scheme, in equilibrium, agents in state 1 violate the rules and agents in state 2 adhere.

Consequently any agent that is inspected is moved to the other state. We can view state

1 as a rewarding state, and state 2 as a neutral state. The inspector chooses the auditing

probabilities to minimizes the expected number of agents in the rewarding state while keeping

incentive compatibility.

Greenberg (1984) argued that the strategy proposed by Landsberger and Meilijson is not

optimal, and Greeberg suggested an improved inspection scheme. He added to the inspection

scheme a third state which serves as a punishment state, from which no escape is allowed,

so that once in this state, one faces a sure audit in the future. Greenberg showed that, if

players are extremely patient, then regardless of how small the percentage of individuals the

tax authorities can audit (which is determined by the agency's budget), the rate of violations

can be made arbitrarily small. This is because when players do not discount future payo�s,

the loss from the risk of being moved to the punishment state, no matter how small the

probability is, always exceeds the bene�t from the current-period gain from an undetected

violation.

Even though the two (or three) states dependent inspection schemes have drawn lots of

attention in the literature (for instance, Harrington (1988), Harford and Harrington (1991),

and Harford (1991) adapted these auditing mechanisms into environmental control problems

to explain the phenomenon of high compliance in the absence of strict enforcement), as

acknowledged by Greenberg, it is far from being optimal if players are not in�nitely patient.

An obvious way for improvement is adding more states to the model. For instance, an agent

will be moved to a �rewarding� state only if he is found compliant for a certain number of

times. Moreover, there may exist inspection schemes which are non-state-dependent and
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outperform all state-dependent schemes. This paper is part of a general agenda to identify

the optimal inspection schemes.

We study a model with one inspector and two agents. There are in�nite number of

periods, at each period each agent has two possible actions, V (violate) or A (adhere) and

the inspector can inspect on at most one agent. It is assumed that the inspector will �nd out

the action of an agent if and only if this agent is inspected upon. At each period, an agent who

plays A obtains 0. The agent who plays V gets 1 if not being inspected and −c otherwise. If
c > 1, the inspector can deter both agents from violating in the stage game by inspecting on

each one of them with probability 0.5 and the optimal inspection scheme is trivial. Therefore

we focus on the case 0 < c < 1. For simplicity it is assumed that in case of indi�erence, an

agent chooses A. This is as if agents violate the rules only if such a violation is pro�table.

As for the inspector, he loses 1 for each instance in which an agent played V , regardless

of whether this agent is inspected or not. This payo� is not observable by the inspector

until the end of the game. Each agent and the inspector maximizes the discounted payo�

with a common discount factor δ. We assume that the inspector has Stackelberg leadership

advantage, so that he announces and commits to an inspection scheme at the beginning of

the game. Motivation for Stackelberg - rules of agency, real-life example, related literature.

Note that the goal of the inspector is to minimize the discounted number of violations, with

no separate value for the extraction of penalties after its detection. In many cases the damage

caused by the violation behavior is incomparable with the monetary penalties because they

are in di�erent dimensions. For instance, in the environmental control problem, the damage

caused by a �rm's illegal emission of polluted air or water may be di�cult to repair.

It can be veri�ed that a myopic agent chooses A if and only if the probability of being

inspected in the current period is no less than 1
1+c

. Since c < 1, we have 1
1+c

> 1
2
, and

therefore the inspector who faces two myopic agents can deter at most one from violating

in each period. As noted by Landsberger and Meilijson (1982) and Greenberg (1984), when

the agents are far-sighted, the inspector can do better since future frequency of auditing can

serve as a mean to discipline agents. In this paper we identify the optimal inspection scheme.

First note that there is no cheat-proof mechanism. Indeed, an agent who is inspected

with probability less than 1
1+c

in the �rst period can obtain a positive payo� by choosing

Violate in the �rst period and Adhere in all subsequent periods. Consequently, the inspector

has to tolerate at least one agent to violate in some periods. We refer to the stages in which

the inspector intentionally allows an agent to violate as rewarding stages. Our goal is to

make the best use of the rewarding stages to deter most violations.

The optimal inspection scheme consists of two phases. In Phase 1 there is a �war of

tokens�. At the beginning both agents have the same amount of tokens and the inspector
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inspects on them with the same probability (0.5). Depending on the realization of the

inspector's action, the agent that is inspected upon and found adhering gains tokens, while

the agent that is not inspected loses tokens. In the next period, the inspector inspects on

the agent with more tokens with a lower probability. Again, depending on the realization

of the inspector's second period action, the agent that is inspected upon gains tokens, and

the other one loses tokens. The number of tokens that is added to and subtracted from the

agents depend on the number of tokens they currently have, and the sum of both agents'

tokens is not necessarily constant. The process continues until one of the agent loses all his

tokens and Phase 1 ends. In Phase 1, any agent who is found violating faces sure audit in

all future periods.

In Phase 2, the agent that has zero token is inspected with probability 1
1+c

in every

period and consequently chooses Adhere throughout. The other agent is inspected with the

remaining probability ( c
1+c

), until he is actually being inspected upon. At that moment he

triggers a rewarding cycle, which is periodic with length k+ 1 that lasts forever. At the �rst

k stages of each cycle the agent is inspected with probability c
1+c

. If he was never found

violating in the past, then in the (k + 1)th stage he will not be inspected, and will be able

to obtain 1 by violating. If he is found violating in any of the �rst k stages, he faces sure

audit in all future periods.

Several insights can be drawn. First, under the optimal inspection scheme, no agent

chooses Violate in Phase 1. This is because comparing with issuing a reward (i.e., inspecting

on an agent with zero probability) in Phase 1, the inspector bene�ts from delaying the

reward and using it as a deterrence for violations. Second, the strategy in Phase 1 exhibits

the feature of �upgrading the inspected agent and downgrading the uninspected one�. This

feature seems to be unfair to the uninspected agent, but it is inevitable: an agent's choice of

Violate/Adhere depends only on the di�erence between his expected payo�s if he is inspected

and found violating and if he is found adhering - the expected payo� of not being inspected,

no matter how low it is, does not a�ect an agent's current period action. Consequently, the

inspector, whose goal is to deter violation, would not �waste� the reward on the occurrence

of uninspection. Another feature of Phase 1 is that the inspector inspects on the agent with

more tokens with a lower probability. An agent with more tokens faces a higher expected

payo� if he is found adhering. Therefore, even if he is inspected with a relatively low

probability, he is not willing to take the risk of violating and losing his high �endowment�.

Finally, in the rewarding stages in Phase 2, that is, the (k + 1)th stage in each cycle, the

inspector does not inspect on the rewarded agent. The rewarding stage is designed for the

agent to violate, so that he has incentive to adhere in the previous k stages of the cycle as

well as to adhere in Phase 1. A positive (even if small) probability of being inspected in
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the rewarding stage hurts the agent's pro�t, which in turn reduces the number of adhering

periods the rewarding stages can sustain.

By dynamically changing the probability of inspection, while having in�nitely many

states, our inspection scheme signi�cantly outperforms the mechanisms proposed by Lands-

berger and Meilijson (1982) and Greenberg (1984). In the case where c = 0.7 and δ = 0.9

(players are quite patient), the optimal expected payo� of the inspector within the frame-

work of the three-state mechanism (as proposed by Greenberg (1984)) is −7.456, while in

our mechanism, the inspector can guarantee an expected payo� of −0.36.

Many questions remain open - for instance, the structure of the optimal inspection mech-

anism when players have di�erent discount factors; when there are more than one inspectors

and more than two agents; when the adjudication is not perfect; or when agents assign

di�erent values to violation.

A related strand of literature concerns recursive inspection games (e.g., Dresher (1962),

Maschler (1966), Avenhaus and Von Stengel (1992), Avenhaus, Von Stengel, and Zamir

(2002)). These models include only one agent, whom can be inspected only m times out

of n periods. Our model has two agents and there is no sure deadline - players discount

future payo�s, which is equivalent to having the game end at a random time. Moreover, in

our model there is no constraint on the number of periods the inspector can audit (instead,

there is a resource constraint which allows the inspector to audit at most one individual in

each period). Recently, repeated inspection games have drawn lots of attention in Computer

Science, under the context of crime control: an attacker can choose among several sites

to attack, while the defender can select only a limited number of sites to protect. Most

papers in this strand of literature either assume myopic attackers (e.g., Letchford, Conitzer,

and Munagala (2009), Blum, Haghtalab, and Procaccia (2015), Marecki, Tesauro, and Segal

(2012)) or bounded rational attackers (e.g., Yang et al. (2014), Nguyen et al. (2013), Haskell

et al. (2014), Kar et al. (2015)). In contrast, in our model the players are fully rational and

the strategy takes into account all past histories.

2 Model

The stage game is given in strategic form Γ = (N, (Ai)i∈N , (ui)i∈N), where N = {0, 1, 2}
is the set of players, Ai is the set of actions available to player i, and ui : A→ R is the payo�

function of player i in the stage game (A ≡
∏

iAi is the set of action vectors). The inspector

is referred to as Player 0, with A0 = {I1, I2, ∅}. Here ∅ represents no inspection, I1 and I2

represents inspecting on Agent 1 and 2, respectively. Agents are referred to as Player 1 and
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2. For i = 1, 2, Ai = {V,A} and

ui(a) =


0 if ai = A

−c if ai = V and a0 = Ii

1 if ai = V and a0 6= Ii,

(1)

where c < 1. For the inspector,

u0(a) = −
(
1V (a1) + 1V (a2)

)
, (2)

where for i = 1, 2,

1V (ai) :=

{
1 if ai = V

0 if ai = A.
(3)

At the end of every stage the two agents observe the inspector's action. If the inspector

monitored one of the agents at that stage, the action of the monitored agent is publicly

observed. This is equivalent to the situation in which the players observe at the end of each

stage a public signal y, drawn from a signal space Y = (V1, A1, V2, A2, ∅). The realization of

signal y, given the action pro�le a ∈ A is deterministic and it is denoted by y(a), where

y(a) :=



∅ if a0 = ∅
V1 if a0 = I1 and a1 = V

A1 if a0 = I1 and a1 = A

V2 if a0 = I2 and a2 = V

A2 if a0 = I2 and a2 = A.

(4)

In the repeated game, the only public information available in period t is the (t−1)-period

history of public signals, ht ≡ (y0, y1, ..., yt−1). The set of public histories is

H ≡ ∪∞t=0Y
t,

where we set Y 0 ≡ ∅. Each player has a private history: an agent's private history

includes both the public history and his own actions in stages he was not monitored,

hti ≡ (y0, a0i ; y
1, a12; ...; y

t−1, at−1i ). That is, the set of histories for Agent i, i = 1, 2, is

Hi ≡ ∪∞t=0(Ai × Y )t,

where we set (Ai×Y )0 ≡ ∅. The inspector's private history coincides with the public history.

A strategy of the inspector, σ0, is a mapping from the set of all public histories into the
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set of mixed actions. Let ∆A0 be the set of mixed actions for the inspector,

σ0 : H → ∆A0.

Denote by B0 the set of all strategies of the inspector in the in�nite repeated game.

It is assumed that the inspector announces his entire inspection strategy, σ0 ∈ B0, at

the beginning of the game and he is able to commit to it. We assume that the inspector

has a Stackelberg leader advantage, because the inspector typically can publicly announce

his inspection strategy.

For simpli�cation, we focus on pure public strategy of the agents. An agent's pure public

strategy is a pure strategy which depends only on the public history and not on the agent's

private history. It is then a mapping from the set of inspection strategy B0 and all public

histories into the set of pure actions Ai. That is, for i = 1, 2,

σi : B0 ×H → Ai.

We will concentrate on equilibria in which the agents play a pure public strategy and the

inspector plays a behavior public strategy. In such an equilibrium, the agents cannot gain by

deviating to a behavior public strategy. Since this is a game with perfect recall, a behavior

public strategy is equivalent to a mixed public strategy (Kuhn's theorem). Therefore there is

also no pro�table deviation to a mixed public strategy. However, there might be additional

equilibria in which both players play a behavior public strategy. We will not consider such

equilibria.

Denote by σ = (σ0, σ1, σ2) the vector of the players' strategies. A play induced by σ is an

in�nite sequence of action pro�les a(σ) ≡ (a0(σ), a1(σ), a2(σ), ...), where at(σ) = (ati(σ))i∈N

is the action vector of the players in stage t. In stage t, the action pro�le at(σ) yields a

payo� of ui(a
t(σ)) to player i. A play a(σ) thus implies an in�nite stream of stage-game

payo�s to each agent, given by
(
ui(a

0(σ)), ui(a
1(σ)), ui(a

2(σ)), ...
)
∈ R∞. The collection of

all the possible plays of the in�nitely repeated game is denoted by A∞ = AN. Every vector

of strategies σ induces a probability distribution Pσ over the set A∞. We denote by Eσ

the expectation operator that corresponds to the probability distribution Pσ; i.e., for every

function f : H∞ → R, the expectation of f under Pσ is denoted by Eσ[f ]:

Eσ[f ] =

∫
a∈A∞

f(a)dPσ(a).

Player i's expected payo� in stage t, under the strategy vector σ, is Eσ[uti]. Denote player
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i's discounted payo� under strategy vector σ by

vi(σ) := Eσ

[
∞∑
t=1

δt−1uti

]
. (5)

Note that the agents know their stage payo� while the inspector does not. Denote the

subgame following the announcement of an inspection scheme σ0 by Γ(σ0). Strategies (σ1, σ2)

is a Nash equilibrium of Γ(σ0) if for every σ
′
1,

v1(σ0, σ1, σ2) ≥ v1(σ0, σ
′
1, σ2),

and for every σ′2,

v2(σ0, σ1, σ2) ≥ v2(σ0, σ1, σ
′
2).

For every public history ht ∈ H , we de�ne the continuation game to be the in�nitely

repeated games that begins in period t, following history ht. For every strategy pro�le σ,

the inspector's continuation inspection strategy induced by ht, denoted σ0|ht , is given by

σ0|ht(hτ ) = σ0(h
thτ ),∀hτ ∈H ,

where hthτ is the concatenation of the history ht followed by the history hτ . This is the

inspection behavior implied by the strategy σ0 in the continuation game that follows history

ht.

Agent i's continuation strategy induced by ht, denoted σi|ht , is given by

σi|ht(σ0|ht , hτ ) = σi(σ0, h
thτ ),∀hτ ∈H .

Strategies (σ1, σ2) is a subgame-perfect equilibrium of Γ(σ0) if for all public histories h
t ∈H ,

(σ1|ht , σ2|ht) is a Nash equilibrium of Γ(σ0|ht).
We focus only on the inspection strategies σ0 such that in Γ(σ0) the set of pure subgame-

perfect equilibria is nonempty. Denote by E the set of all such inspection strategies,1 and for

every σ0 ∈ E denote by (σσ01 , σ
σ0
2 ) the equilibrium strategy in Γ(σ0) that yields the inspector

the highest expected payo�. Our goal is to �nd out the optimal inspection strategy σ∗0 of

the inspector,

σ∗0 = argmax
σ0∈E

v0(σ0, σ
σ0
1 , σ

σ0
2 ). (6)

That is, to �nd the Nash equilibrium (where agents play public pure strategies and the

1It is easy to verify that E is non-empty. For instance, suppose for every ht ∈H , σ̂0(ht) = I1, σ̂1(ht) = A
and σ̂2(ht) = V . Then (σ̂1, σ̂2) is a subgame-perfect equilibrium of Γ(σ̂0). Therefore σ̂0 ∈ E .
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inspector plays mixed strategies) of the Stackelberg game Γ.

Denote by σ∗ = (σ∗0, σ
σ∗0
1 , σ

σ∗0
2 ) (one of) the Nash equilibrium strategy. Note �rst that

v0(σ
∗) ≤ −

(
v1(σ

∗) + v2(σ
∗)
)
. (7)

This is because in each instance an agent chooses V, the �damage" he imposes on the inspector

is at least as much as his bene�t (see (1) - (3)).

Denote by σ0(a0) the probability that the inspector plays action a0 in the �rst stage, and

by σ0(a0|ht−1) the conditional probability that the inspector plays action a0 in stage t, given

that the public history in the �rst t− 1 periods is ht−1. Given every inspection strategy σ0,

for i = 1, 2 denote by σσ0i (ai) the probability that agent i plays action ai in the �rst stage,

and by σσ0i (ai|ht−1) the conditional probability that agent i plays action ai in stage t, given

the public history ht−1. Note that since we consider only the pure public strategies of the

agents, σσ0i (ai|ht−1) is either 1 or 0.

Proposition 1. max
(
v1(σ

∗), v2(σ
∗)
)
> 0.

That is, no inspection strategy can deter both agents from violating, forever. By (7) and

Proposition 1, v0(σ
∗) < 0.

Proof. Suppose v1(σ
∗) = v2(σ

∗) = 0. Without loss of generality let σ∗0(I1) ≤ σ∗0(I2). Since

σ∗0(I1) + σ∗0(I2) ≤ 1, σ∗0(I1) ≤ 1
2
. If Agent 1 chooses V in the �rst period, he obtains

(
1− σ∗0(I1)

)
− c · σ∗0(I1) + δ · v′.

Here v′ is Agent 1's expected continuation payo� if he chooses V in period 1. Clearly v′ ≥ 0

since Agent 1 can guarantee 0 by choosing A in every period t, t ≥ 2. Since σ∗0(I1) ≤ 1
2
and

c < 1,

(
1− σ∗0(I1)

)
− c · σ∗0(I1) + δ · v′ ≥

(
1− σ∗0(I1)

)
− c · σ∗0(I1) > 0. (8)

Therefore Agent 1 can obtain a positive payo� by choosing V in the �rst period, contradicting

to v1(σ
∗) = 0.

Assumption 1. σσ0i (A|ht) = 1 if vi(σ|(ht,Vi)) = vi(σ|(ht,Ai)).

Assumption 1 asserts that in case of indi�erence, each agent prefers A to V. That is,

an agent will not choose V unless it is bene�cial - this reduces the number of equilibrium

outcomes in Γ(σ0).
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Proposition 2. There exists an equilibrium σ∗, under which

σ
σ∗0
i (A|ht−1) = 1 i� vi(σ

∗|(ht−1,Ai)) ≥ f
(
σ∗0(Ii|ht−1)

)
, (9)

where

f(p) =

{
1−p−cp
pδ

if 0 ≤ p < 1
1+c

0 if 1
1+c
≤ p ≤ 1.

(10)

Proof. See A.1 of the Appendix.

Proposition 2 asserts that there exists an equilibrium under which each agent's V/A

decision in period t − 1 depends only on the probability that he will be inspected in the

current period, as well as the (expected) continuation payo� if being (inspected and) found

A. In this equilibrium, the inspector imposes the most severe punishment on the agent who

deviates from A - to inspect on him with probability 1 in every continuation period.

By Proposition 2, if an agent is inspected with probability p in period t−1, he chooses A

if and only if the expected continuation payo� he will obtain if he is (inspected and) found A

is no less than f(p). In particular, if p ≥ 1
1+c

, this agent is best o� choosing A in the current

period, regardless of the continuation payo�. Note that an agent's expected continuation

payo� if he is not inspected has no e�ect on his current-period action.

Consider an equilibrium σ∗ and suppose that v0(σ
∗) > 1

1−δ .

By (7),

v0(σ) ≤ −
(
v1(σ

∗) + v2(σ
∗)
)
. (11)

We next show that there exists an equilibrium under which the equality in (11) holds.

Proposition 3. Suppose v0(σ
∗) > − 1

1−δ . There exists an equilibrium σ∗ under which

v0(σ
∗) = −

(
v1(σ

∗) + v2(σ
∗)
)

(12)

Proof. See A.2 of the Appendix.

Lemma 1. (i) For every x ∈
[
0, 1

1−δ

]
there exists a strategy σ̄0 of the inspector that yields

agent i an expected payo� of x. (ii) Suppose σ∗ is an equilibrium of Γ. Then vi(σ
∗) ≤ f

(
c

1+c

)
for i = 1, 2.

Proof. See A.3 of the Appendix.

Conditional on agent 1 obtains an expected payo� x ≥ 0, we would like to �nd the

inspection strategy of the inspector that minimizes the expected payo� of the other agent.
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Denote by g(x) the lowest equilibrium payo� of agent j when agent i, i 6= j, obtains an

expected payo� of x.

Proposition 4. (i) g(x) is non-negative and non-increasing; (ii) g(x) is convex; (iii) g(0) =
1−c2
1+c−δ and g( 1−c2

1+c−δ ) = 0; (iv) for ∀x ∈ [0, 1−c2
1+c−δ ], g

(
g(x)

)
= x.

Proof. See A.4 of the Appendix.

Denote w(p) = p · f(p) + (1− p) · g
(
f(1− p)

)
. Note that w(p) is strictly decreasing in p

for p ∈ [ c
1+c

, 1
1+c

].

Proposition 5. For ∀x ∈ (0, 1−c2
1+c−δ ), let p1 = w−1

(
x
δ

)
. v1(σ) = x and v2(σ) = g(x) can be

implemented by the strategy σ0: (i) σ0(∅) = 0, (ii) v1(σ|A1) = f(p1), v2(σ|A1) = g
(
f(p1)

)
,

v1(σ|A2) = g
(
f(1− p1)

)
and v2(σ|A2) = f(1− p1).

Proof. See A.5 of the Appendix.

The next corollary follows immediately.

Corollary 1. In equilibrium both agents choose Adhere before one agent's expected payo�

reaches zero.

After an agent's continuation payo� dropped down to zero, the other agent (who obtains

a positive payo�) chooses Violate periodically - see A.3 of the Appendix for a detailed

characterization.

Figure 8 follows immediately from Proposition 5.

Figure 1

For every x ∈ (0, 1−c2
1+c−δ ),

x = 0 + δ ·
(
p1 · f(p1) + (1− p1) · g

(
f(1− p1)

))
, (13)

g(x) = 0 + δ ·
(
p1 · g

(
f(p1)

)
+ (1− p1) · f(1− p1)

)
. (14)
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Since p1 = w−1
(
x
δ

)
, (13) holds automatically. By (14),

g(x) = δ · w
(

1− w−1
(x
δ

))
. (15)

In order to characterize (one of) the optimal inspection scheme, we need to �nd the function

g(·) that satis�es (15) for every x ∈ (0, 1−c2
1+c−δ ). The analytical solution is di�cult to solve,

however, we can �nd the numerical solution for every given pairs of parameters (c, δ). See

Section 3 for an example.

Corollary 2. For ∀x ∈ (0, 1−c2
1+c−δ ), in the equilibrium that is characterized in Proposition 5:

(i) v1(σ|A1) > x, (ii) v1(σ|A2) < x, (iii) v2(σ|A1) < g(x), (iv) v2(σ|A2) > g(x).

Proof. See A.6 of the Appendix.

Proposition 6. In equilibrium (i) v1(σ) = v2(σ) > 0; (ii) σ0(I1) = σ0(I2) = 0.5.

Proof. See A.7 of the Appendix.

Proposition 6 asserts that, in the �rst period the inspector inspects on each agent with

probability 0.5, and both agents obtain the same expected payo�.

Suppose the expected payo� of agent 1 and 2 in the current period is x and g(x), respec-

tively, where x ∈ (0, 1−c2
1+c−δ ). By Corollary 1 in equilibrium both agents will be inspected with

positive probabilities and both will choose A in the current period. Depending on the real-

ization of the principal's current-period inspection action, the agent that is inspected upon

will obtain a higher expected payo� in the next period (compared with his current-period

payo�), and the agent that is not inspected will obtain a lower expected payo�. W.l.o.g. sup-

pose agent 1 is inspected in the current period. If f(p1) ∈ (0, 1−c2
1+c−δ ), then v1(σ|A1) = f(p1)

and v2(σ|A1) = g
(
f(p1)

)
can be implemented by the same strategy as setting x = f(p1). In

the case where f(p1) ≥ 1−c2
1+c−δ , g

(
f(p1)

)
= 0 and this outcome can be implemented by the

strategy described in A.4 (iii) of the Appendix.

3 Example

This section characterizes the optimal inspection scheme when c = 0.7 and δ = 0.9.

Figure 2 shows the the corresponding g(·) function.
One of the optimal inspection strategy is summarized in Figure 9), with the numbers on

the lines representing the inspection probability on agent 1 and 2, and the numbers in the

parentheses representing the expected continuation payo� of agent 1 and 2, respectively. In

period 1, each agent's expected payo� is 0.18 and the inspector inspects on each agent with

12



Figure 2: g(x) for Case c = 0.7 and δ = 0.9

probability 0.5. Suppose agent 1 is inspected in the �rst period, then in the second period,

agent 1's expected payo� increases to 0.33 while agent 2's expected payo� drops to 0.08.

Suppose, again agent 1 is inspected in the second period, then in the third period, agent 1's

expected payo� increases again, to 0.54, and agent 2's payo� drops again, to 0.015. If agent

1 is inspected for another time in the third period, Phase 1 ends and agent 1 and 2 obtains

the expected payo� of 0.75 and 0, respectively. If, however, in the third period, agent 2 is

inspected, then in the forth period agent 2's expected payo� increases, and agent 1's payo�

decreases. Similar process continues until one of the agent's payo� drops to 0.

Figure 3: Phase 1 for Case c = 0.7 and δ = 0.9

13
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A Appendix

A.1 Proof of Proposition 2

Lemma 2. σσ0i (A|ht−1) = 1 i�

vi(σ|(ht−1,Ai))− vi(σ|(ht−1,Vi)) ≥
(
1−σ0(Ii|ht−1)

)
−c·σ0(Ii|ht−1)

σ0(Ii|ht−1)·δ . (16)

Proof. Without loss of generality let i = 1. Denote p1 = σ0(I1|ht−1). If Agent 1 chooses V,

he obtains

A ≡ (1− p1)− c · p1 + (1− p1)δvNI + p1δv
V , (17)

where vNI is Agent 1's expected continuation payo� if he is not being inspected in period t,

and vV is his expected continuation payo� if he is being inspected in period t and found V.

If Agent 1 chooses A, he obtains

B ≡ 0 + (1− p1)δvNI + p1δv
A, (18)

where vA is Agent 1's expected continuation payo� if he is inspected in period t and found

A. It worth notice that Agent 1's expected continuation payo� if he is not inspected is the

same regardless of his action in period t.

B − A = p1δ
(
vA − vV

)
−
(
(1− p1)− cp1

)
≥ 0,

and Lemma 2 follows.

By Lemma 2, agent i's V/A decision in period t (following the history ht−1) depends only

on the probability that he will be inspected in the current period; the (expected) continuation

payo� if being (inspected and) found V, as well as his payo� if being (inspected and) found

A. In particular, it does not depend on agent i's (expected) continuation payo� if he is not

inspected.

Lemma 3. There exists an optimal strategy of the inspector, σ0, under which vi(σ|(ht,Vi)) ≤
vi(σ|(ht,Ai)) for i = 1, 2 and for every ht ∈H .

Note that σ = (σ0, σ
σ0
1 , σ

σ0
2 ). Lemma (3) asserts that there exists an optimal inspection

strategies under which the inspector does not reward violating. That is, an agent's expected

continuation payo� if he is (inspected and) found V is no more than his expected continuation

payo� if he is (inspected and) found A.
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Proof. Suppose there exists an equilibrium σ̂ = (σ̂0, σ
σ̂0
1 , σ

σ̂0
2 ) under which there exists a

history ĥk−1, v1(σ̂|(ĥk−1,V1)
) > v1(σ̂|(ĥk−1,A1)

).

Case 1: suppose

v1(σ̂|(ĥk−1,A1)
)− v1(σ̂|(ĥk−1,V1)

) ≥
(
1−σ̂0(I1|ĥk−1)

)
−c·σ̂0(I1|ĥk−1)

σ̂0(I1|ĥk−1)·δ . (19)

By Lemma 2, σσ̂01 (A|ĥk−1) = 1. In this case consider the inspection strategy σ̃0, which is the

same as σ̂0 except that σ̃0|(ĥk−1,V1)
= σ̂0|(ĥk−1,A1)

. It can be easily veri�ed that

v1(σ̃|(ĥk−1,V1)
) = v1(σ̃|(ĥk−1,A1)

)

= v1(σ̂|(ĥk−1,A1)
) < v1(σ̂|(ĥk−1,V1)

).
(20)

Since σ̃0(I1|ĥk−1) = σ̂0(I1|ĥk−1),

v1(σ̃|(ĥk−1,A1)
)− v1(σ̃|(ĥk−1,V1)

) ≥
(
1−σ̃0(I1|ĥk−1)

)
−c·σ̃0(I1|ĥk−1)

σ̃0(I1|ĥk−1)·δ (21)

and σσ̃01 (A|ĥk−1) = 1. It is then easy to verify that σ̃ = (σ̃0, σ
σ̃
1 , σ

σ̃
2 ) is also an equilibrium of

Γ.

Case 2: suppose

v1(σ̂|(ĥk−1,A1)
)− v1(σ̂|(ĥk−1,V1)

) <

(
1−σ̂0(I1|ĥk−1)

)
−c·σ̂0(I1|ĥk−1)

σ̂0(I1|ĥk−1)·δ . (22)

By Lemma 2, σσ̂01 (V |ĥk−1) = 1.

We construct another strategy of the inspector, σ′0, which satis�es (i) σ′0(a0|h) = σ̂0(a0|h)

for ∀h ∈ ∪k−1t=0 Y
t. (ii) σ′0|(hk−1,y) = σ̂0|(hk−1,y) for every hk−1 6= ĥk−1. (iii) σ′0|(ĥk−1,y) =

σ̂0|(ĥk−1,y) for every y 6= A1. (iv) σ
′
0|(ĥk−1,A1)

= σ̂0|(ĥk−1,V1)
. Namely, σ′0 is similar to σ̂0 except

that following history ĥk−1, if agent 1 in period k−1 is inspected and found A, the inspector

acts as if agent 1 is found V. We claim that σ′ = (σ′0, σ
σ′0
1 , σ

σ′0
2 ) is an equilibrium of Γ.

Now we consider agents' equilibrium strategy under σ′0. By (ii) and (iii), for i =

1, 2, σ
σ′0
i |(hk−1,y) = σσ̂0i |(hk−1,y) for either hk−1 6= ĥk−1 or y 6= V1. Therefore for i = 1, 2,

vi
(
σ′|(hk−1,y)

)
= vi

(
σ̂|(hk−1,y)

)
for either hk−1 6= ĥk−1 or y 6= V1. By (iv), σ

σ′0
1 |(ĥk−1,A1)

(hτ ) =

σσ̂01 |(ĥk−1,V1)
(hτ ) and σ

σ′0
2 |(ĥk−1,A1)

(hτ ) = σσ̂02 |(ĥk−1,V1)
(hτ ) for ∀hτ ∈H , thus v1

(
σ′|(ĥk−1,A1)

)
=

v1
(
σ̂|(ĥk−1,V1)

)
and v2

(
σ′|(ĥk−1,A1)

)
= v2

(
σ̂|(ĥk−1,V1)

)
. Since v1(σ̂|(ĥk−1,V1)

) > v1(σ̂|(ĥk−1,A1)
) (by

assumption), v1(σ
′|(ĥk−1,A1)

) > v1(σ̂|(ĥk−1,A1)
).

We next consider agent i's equilibrium strategy at period k − 1. By Lemma 2 agent

2's action following history ĥk−1 is the same in σ′0 and σ̂0. As for agent 1, there are two

17



possibilities.

Subcase 2.1: suppose

v1(σ
′|(ĥk−1,A1)

)− v1(σ′|(ĥk−1,V1)
) <

(
1−σ′0(I1|ĥk−1)

)
−c·σ′0(I1|ĥk−1)

σ′0(I1|ĥk−1)·δ , (23)

then σ
σ′0
1 (V |ĥk−1) = 1. That is, the equilibrium path under σ̂ and σ′ is the same and

v0(σ
′) = v0(σ̂). It is then easy to verify that σ̃ = (σ̃0, σ

σ̃
1 , σ

σ̃
2 ) is an equilibrium of Γ.

Subcase 2.2: suppose

v1(σ
′|(ĥk−1,A1)

)− v1(σ′|(ĥk−1,V1)
) ≥

(
1−σ′0(I1|ĥk−1)

)
−c·σ′0(I1|ĥk−1)

σ′0(I1|ĥk−1)·δ , (24)

then σ
σ′0
1 (A|ĥk−1) = 1. Since v1

(
σ′|(ĥk−1,A1)

)
= v1

(
σ̂|(ĥk−1,V1)

)
and v2

(
σ′|(ĥk−1,A1)

)
= v2

(
σ̂|(ĥk−1,V1)

)
,

v1
(
σ′|ĥk−1

)
= v1

(
σ̂|ĥk−1

)
and v2

(
σ′|ĥk−1

)
= v2

(
σ̂|ĥk−1

)
. Therefore the choice of agent 1 and 2

following history ĥk−2 (here ĥk−2 is the history that is consistent with the �rst k− 2 periods

of k̂k−1) is the same under σ̂0 and σ
′. The only di�erence between the the equilibrium path

induced by these two inspection strategies is that following ĥk−1, agent 1 chooses V under

σ̂0; while he chooses A under σ′0. The inspector's payo� under σ′ is then no less than his

payo� under σ̂. Namely, σ′ is also an equilibrium of Γ.

Since the same argument can be made for each history ht under which v1(σ̂|(ht,V1)) >
v1(σ̂|(ht,A1)), Lemma 3 follows.

Lemma 4. (i) If σ0(Ii|ht−1) ≥ 1
1+c

, then σσ0i (A|ht−1) = 1. (ii) If σ0(Ii|ht−1) < 1
1+c

, then

σσ0i (A|ht−1) = 1 i�

vi(σ|(ht−1,Ai))− vi(σ|(ht−1,Vi)) ≥
(
1−σ0(Ii|ht−1)

)
−c·σ0(Ii|ht−1)

σ0(Ii|ht−1)·δ . (25)

Lemma 4 states that if the probability of an agent being inspected in period t is no less

than 1
1+c

, this agent is best o� choosing A in that period. If the probability of an agent being

inspected in period t is less than 1
1+c

, this agent chooses A if and only if the �reward" he will

obtain if he is found A is su�ciently higher than the �punishment" he faces if he is found V.

Proof. By Lemma 3, vi(σ|(ht−1,Ai)) ≥ vi(σ|(ht−1,Vi)). Lemma 4 follows immediately from

Lemma 2.

Lemma 5. There exists an optimal strategy of the inspector, σ∗0, such that for every history

ht−1 satisfying σ
σ∗0
i (A|ht−1) = 1, vi(σ

∗|(ht−1,Vi)) = 0.
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Note that σ∗ = (σ∗0, σ
σ∗0
1 , σ

σ∗0
2 ). Lemma 5 asserts that the inspector cannot loss by imposing

the most severe punishment on an agent if this agent deviates from A. Since every equilibrium

inspection strategy yields the inspector the same payo�, we next focus only on those with

the structure described in Lemma 5.

Proof. Suppose there exists an equilibrium σ̂ = (σ̂0, σ
σ̂0
1 , σ

σ̂0
2 ) under which there exists a

history ĥk−1, σσ̂01 (A|ĥk−1) = 1, while v1
(
σ̂|(ĥk−1,V1)

)
> 0.

We construct another strategy of the inspector, σ′0, which satis�es (i) σ′0(a0|h) = σ̂0(a0|h)

for ∀h ∈ ∪k−1t=0 Y
t. (ii) σ′0|(hk−1,y) = σ̂0|(hk−1,y) for every hk−1 6= ĥk−1. (iii) σ′0|(ĥk−1,y) =

σ̂0|(ĥk−1,y) for every y 6= V1. (iv) σ
′
0(I1|(ĥk−1, V1, hτ )) = 1 for ∀hτ ∈H . Namely, σ′0 is similar

to σ̂0 except that following history ĥk−1, if agent 1 in period k− 1 is inspected and found V,

the inspector will inspect on him with probability 1 for every following period.

Now we consider agents' equilibrium strategy under σ′0. By (ii) and (iii), for i =

1, 2, σ
σ′0
i |(hk−1,y) = σσ̂0i |(hk−1,y) for either hk−1 6= ĥk−1 or y 6= V1. Therefore for i = 1, 2,

vi
(
σ′|(hk−1,y)

)
= vi

(
σ̂|(hk−1,y)

)
for either hk−1 6= ĥk−1 or y 6= V1. By (iv), σ

σ′0
1 |(ĥk−1,V1)

(hτ ) = A

and σ
σ′0
2 |(ĥk−1,V1)

(hτ ) = V for ∀hτ ∈H , thus v1
(
σ′|(ĥk−1,V1)

)
= 0 and v2

(
σ′|(ĥk−1,V1)

)
= 1

1−δ .

We next consider agents' equilibrium strategy at period k − 1. Note that under σ0,

each agent's V/A decision in period k − 1 depends only on vi(σ0|(hk−1,Ai)), vi(σ0|(hk−1,Vi))

and σ0(Ii|hk−1), but not on the other agent's action in the current period (see Lemma

4). Thus by (i) and (ii), for every hk−1 6= ĥk−1, σ
σ′0
i (ai|hk−1) = σσ̂0i (ai|hk−1) for every

ai ∈ Ai. Moreover, σ
σ′0
2 (a2|ĥk−1) = σσ̂02 (a2|ĥk−1) for every a2 ∈ A2. It is left to analyze

agent 1's equilibrium strategy under history ĥk−1. Here we need to distinguish between two

cases. In case σ̂0(I1|ĥk−1) ≥ 1
1+c

, σ
σ′0
1 (A|ĥk−1) = σσ̂01 (A|ĥk−1) = 1 regardless of the value of

v1
(
σ′|(ĥk−1,V1)

)
and v1

(
σ′|(ĥk−1,A1)

)
, as long as v1

(
σ′|(ĥk−1,A1)

)
≥ v1

(
σ′|(ĥk−1,V1)

)
(see Lemma

4). In case σ̂0(I1|ĥk−1) < 1
1+c

, σσ̂01 (A|ĥk−1) = 1 implies that

v1
(
σ̂|(ĥk−1,A1)

)
− v1

(
σ̂|(ĥk−1,V1)

)
≥
(
1−σ̂0(I1|ĥk−1)

)
−c·σ̂0(I1|ĥk−1)

σ̂0(I1|ĥk−1)·δ .

Since v1
(
σ̂|(ĥk−1,V1)

)
> 0,

v1
(
σ̂|(ĥk−1,A1)

)
>

(
1−σ̂0(I1|ĥk−1)

)
−c·σ̂0(I1|ĥk−1)

σ̂0(I1|ĥk−1)·δ .

This implies that

v1
(
σ′|(ĥk−1,A1)

)
−

0︷ ︸︸ ︷
vi
(
σ′|(ĥk−1,V1)

)
≥
(
1−σ′0(I1|ĥk−1)

)
−c·σ′0(I1|ĥk−1)

σ′0(I1|ĥk−1)·δ .
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Therefore σ
σ′0
1 (A|ĥk−1) = σσ̂01 (A|ĥk−1) = 1. To summarize, for i = 1, 2, σ

σ′0
i (ai|hk−1) =

σσ̂0i (ai|hk−1) for every hk−1 ∈ Y k−1. Thus, vi(σ
′|hk−1) = vi(σ̂|hk−1). Combining this result

with (i), σ
σ′0
i (ai|hk−2) = σσ̂0i (ai|hk−2) and vi(σ′|hk−2) = vi(σ̂|hk−2) for every hk−2 ∈ Y k−2. By

induction, σ
σ′0
i (ai|h) = σσ̂0i (ai|h) for every h ∈ ∪k−1t=0 Y

t. This implies that σ′ = (σ′0, σ
σ′0
1 , σ

σ′0
2 )

and σ̂ = (σ̂0, σ
σ̂0
1 , σ

σ̂0
2 ) induces the same probability distribution over the set of plays in the

�rst k − 1 periods. Since σ′|(ĥk−1,y) = σ̂|(ĥk−1,y) for ∀y 6= V1 and since the history (ĥk−1, V1)

occurs with probability 0 in both σ′ and σ̂, σ′ induces the same probability distribution over

the set of plays as σ′. By (5), v0(σ
′) = v0(σ̂) and σ′ is an equilibrium of Γ.

Proposition 2 then follows immediately from Lemma 4 and 5.

A.2 Proof of Proposition 3

Rewrite

Lemma 6. (i) v0(σ
∗) ≥ − 1

1−δ . (ii) v0(σ
∗) > − 1

1−δ if and only if there exists ht−1 under

which σ
σ∗0
1 (A|ht−1) = σ

σ∗0
2 (A|ht−1) = 1.

Proof. (i) Consider the following strategy of the inspector: σ̃0(I1|ht−1) = 1
1+c

and σ̃0(I2|ht−1) =
c

1+c
for every ht−1. The best responds of the two agents are σσ̃01 (A|ht−1) = 1 and σσ̃02 (A|ht−1) =

0. The inspector obtains v0(σ̃0, σ
σ̃0
1 , σ

σ̃0
2 ) = −1 − δ − δ2 − ... = − 1

1−δ . By (6), vp(σ
∗) ≥

v0(σ̃0, σ
σ̃0
1 , σ

σ̃0
2 ) ≥ − 1

1−δ . (ii) For the inspector to obtain an expected payo� higher than

− 1
1−δ , it must be the case that in at least one stage both agents choose A.

Suppose v0(σ
∗) > − 1

1−δ but in the �rst period σ
σ∗0
1 (A) = 1 and σ

σ∗0
1 (V ) = 0. The inspector

obtains −1 in the �rst period. From period 2, the inspector obtains

δ ·
( v20︷ ︸︸ ︷
σ∗0(I1) · v0(σ∗|A1) + σ∗0(I2) · v0(σ∗|V2) + σ∗0(∅) · v0(σ∗|∅)

)
,

where v20 > − 1
1−δ . Now consider an alternative strategy σ′0, of the inspector. At the beginning

of the �rst period the inspector uses a random device to determine the inspection strategy:

with probability σ∗0(I1) he chooses σ
∗
0|A1 ; with probability σ∗0(I2) he chooses σ

∗
0|V2 ; and with

probability σ∗0(∅) he chooses σ∗0|∅. Under this new inspection strategy the inspector obtains

v0(σ
′) = v20 > −1 + δ · v20,

contradicts to the assumption that σ∗0 is optimal.
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Lemma 7. Suppose v0(σ
∗) > − 1

1−δ . There exists a public correlated equilibrium σ∗ =

(σ∗0, σ
σ∗0
1 , σ

σ∗0
2 ) under which

v0(σ
∗) = −δ·

[
σ∗0(I1) ·

(
v1(σ

∗|A1) + v2(σ
∗|A1)

)
+ σ∗0(I2) ·

(
v1(σ

∗|A2) + v2(σ
∗|A2)

)
+ σ∗0(∅) ·

(
v1(σ

∗|∅) + v2(σ
∗|∅)
)] (26)

where v1(σ
∗|A1) ≥ f(σ∗0(I1)) and v2(σ

∗|A2) ≥ f(σ∗0(I2)).

Proof. The requirement that v1(σ
∗|A1) ≥ f(σ∗0(I1)) and v2(σ

∗|A2) ≥ f(σ∗0(I2)) follows imme-

diately from Lemma 6 and Proposition 2. We next prove that there exists an equilibrium

satisfying equality (26).

Suppose σ̂ = (σ̂0, σ
σ̂0
1 , σ

σ̂0
2 ) is an equilibrium under which

v0(σ̂) < −
[
σ̂0(I1)δ ·

(
v1(σ̂|A1) + v2(σ̂|A1)

)
+ σ̂0(I2)δ ·

(
v1(σ̂|A2) + v2(σ̂|A2)

)]
. (27)

This implies that the total �damage� of V on the inspector exceeds the total bene�ts of

agents. By (1) - (3), this can happen only if under a history on the equilibrium path, an

agent chooses V while he is inspected with positive probability. That is, there exists a history

ĥk−1 which occurs with positive probability in equilibrium, under which σ̂0(Ii|ĥk−1) > 0 and

σσ̂0i (V |ĥk−1) = 1 for some i. Without loss of generality let i = 1.

Now consider another inspection strategy σ′0. (i) σ′0(a0|h) = σ̂0(a0|h) for ∀h ∈ ∪k−1t=0 Y
t.

(ii) σ′0(I1|ĥk−1) = 0, σ′0(∅|ĥk−1) = σ̂0(∅|ĥk−1) + σ̂0(I1|ĥk−1) and σ′0(I2|ĥk−1) = σ̂0(I2|ĥk−1).
(iii) σ′0|(ĥk−1,∅) = σ̂0(∅|ĥk−1)

σ′0(∅|ĥk−1)
· σ̂0|(ĥk−1,∅) + σ̂0(I1|ĥk−1)

σ′0(∅|ĥk−1)
· σ̂0|(ĥk−1,V1)

and σ′0|(ĥk−1,y) = σ̂0|(ĥk−1,y) for

y 6= ∅. (iv) σ′0|(hk−1,y) = σ̂0|(hk−1,y) for every h
k−1 6= ĥk−1 and y ∈ Y .

Unlike σ̂0, in σ
′
0 under history ĥk−1, the inspector does not inspect on Agent 1. Under

the history (ĥk−1, ∅), in σ′0 the inspector uses a correlation device: he plays σ̂0|(ĥk−1,∅) with

probability σ̂0(∅|ĥk−1)

σ′0(∅|ĥk−1)
and plays σ̂0|(ĥk−1,V1)

with the remaining probability.

We next analyze agents' equilibrium strategies under σ′0. Whenever the inspector uses

σ̂0|(ĥk−1,∅) (or σ̂0|(ĥk−1,V1)
), agent i's equilibrium strategy is σσ̂0i |(ĥk−1,∅) (or σ

σ̂0
i |(ĥk−1,V1)

) and

the expected payo� is vi(σ̂|(ĥk−1,∅)) (or vi(σ̂|(ĥk−1,V1)
)). Thus for i = 0, 1, 2,

vi(σ
′|(ĥk−1,∅)) =

σ̂0(∅|ĥk−1)
σ′0(∅|ĥk−1)

· vi(σ̂|(ĥk−1,∅)) +
σ̂0(I1|ĥk−1)
σ′0(∅|ĥk−1)

· vi(σ̂|(ĥk−1,V1)
).

Since σ′0(I1|ĥk−1) = 0, σ
σ′0
1 (V |ĥk−1) = σσ̂01 (V |ĥk−1) = 1. That is, agent 1 chooses V in

period k− 1, following the history ĥk−1. Since Agent 1's expected continuation payo� under
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σ′ and σ̂ are the same, namely∑
y∈Y

σ′0(y|ĥk−1)v1(σ′|(ĥk−1,y)) =
∑
y∈Y

σ̂0(y|ĥk−1)v1(σ̂|(ĥk−1,y)),

and Agent 1 under σ′0 is inspected with a lower probability in the current period (when he

chooses V), v1(σ
′|ĥk−1) > v1(σ̂|ĥk−1). As for Agent 2, his action in period k− 1 depends only

on the probability that he will be inspected in the current period, as well as the expected

continuation payo� if he is inspected and found A. Since these two values are the same

under σ′ and σ̂, σ
σ′0
2 (a2|ĥk−1) = σσ̂02 (a2|ĥk−1) for every a2 ∈ A2. It is then easy to verify that

v2(σ
′|ĥk−1) = v2(σ̂|ĥk−1) and v0(σ

′|ĥk−1) = v0(σ̂|ĥk−1) (by (2) - (3)).

To summarize,

vi(σ
′|ĥk−1) ≥ vi(σ̂|ĥk−1). (28)

In particular,

v0(σ
′|ĥk−1) = v0(σ̂|ĥk−1), v2(σ

′|ĥk−1) = v2(σ̂|ĥk−1) and v1(σ
′|ĥk−1) > v1(σ̂|ĥk−1). (29)

Note that,

vi(σ
′|hk−1) = vi(σ̂|hk−1) for every hk−1 6= ĥk−1. (30)

Since history ĥk−1 occurs with positive probability, under history ĥk−2 which is consistent

with ĥk−1, vi(σ̂|ĥk−1) ≥ vi(σ̂|hk−1), for every hk−1 6= ĥk−1. This implies that vi(σ
′|ĥk−1) ≥

vi(σ
′|hk−1) for every hk−1 6= ĥk−1 (by (28) and (30)). Thus, by (i), at period k − 1,

σ
σ′0
i (ai|hk−2) = σσ̂0i (ai|hk−2)2. By deduction, in every period 0 ≤ t ≤ k − 1, σ

σ′0
i (ai|ht) =

σσ̂0i (ai|ht).
This implies that σ′ = (σ′0, σ

σ′0
1 , σ

σ′0
2 ) and σ̂ = (σ̂0, σ

σ̂0
1 , σ

σ̂0
2 ) induces the same probability

distribution over the set of plays in the �rst k − 1 periods. Since v0(σ
′|ĥk−1) = v0(σ̂|ĥk−1)

(by 29), the principal obtains the same expected payo� in σ′ and σ̂. Therefore (σ′0, σ
σ′0
1 , σ

σ′0
2 )

is an equilibrium of Γ. Under σ0, unlike in σ̂0, σ
σ′0
1 (V |ĥk−1) = 1 and σ′0(I1|ĥk−1) = 0. By

the same reason we can construct an equilibrium σ∗ = (σ∗0, σ
σ∗0
1 , σ

σ∗0
2 ) under which for each

instance σ
σ∗0
1 (V |ht−1) = 1, σ∗0(I1|ht−1) = 0 holds. Lemma 7 follows.

2Even in case vi(σ̂|ĥk−1) = vi(σ̂|hk−1), there is no uncertainty regarding agent i's choice since we assume

that he prefers A to V in case of indi�erence. Each agent's best respond in a period is uniquely determined

by the current-period inspection probability and the continuation payo�s.
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A.3 Proof of Lemma 1

(i) Let

p =

{
f−1(x) if x ∈

[
0, f

(
c

1+c

)]
c

1+c
if x ∈

(
f
(

c
1+c

)
, 1
1−δ

]
.

(31)

Consider the following strategy that is periodic in every d periods. In each cycle, inspects

on the agent (Agent i) with probability p at each of the �rst d − 1 periods. If found the

agent steals, inspect on him with probability 1 forever. If did not found him steal for d− 1

periods, then in the last period of each cycle, inspect on the agent with probability 0. It's

easy to verify that in each cycle, the agent A in the �rst d − 1 periods and V in the dth

period. Thus this periodic strategy yields the agent a discounted payo� of δd−1 · 1
1−δd . By

solving

δd−1 · 1

1− δd
= f(p) (32)

we can �nd the d∗ that yields the agent an expected payo� of f(p).

If d∗ is an integer, the problem is solved. We next deal with the case in which d∗ is

non-integer. Let

dd∗e = min{n ∈ Z|m ≥ d∗}.

Consider the following inspection strategy which is in cycle for every dd∗e periods. Inspect
on the agent with probability p for (dd∗e − 2) periods. If found violating, then inspect on

him with probability 1 forever. Otherwise in the (dd∗e − 1)th period, �ip an un-even coin

(with probability q the coin turns out to be head and 1 − q tail). The outcome of the coin

is immediately observed by everyone. If the coin turns out to be head, then the inspector

does not inspect on the agent in the current period. The new cycle starts from the next

period in this case. If the coin turns out to be tail, the inspector inspects on the agent with

probability p in the current period and in the next period (dd∗eth period) inspects on the

agent with probability 0. We next �nd the value of q so that the agent's expected payo�

equals to f(p). The solution to

f(p) = q ·
(
δdd
∗e−2 + f(p) · δdd∗e−1

)
+ (1− q) ·

(
δdd
∗e−1 + f(p) · δdd∗e

))
is

q =
f(p)− δdd∗e−1 − f(p) · δdd∗e

δdd∗e−2 + f(p)δdd∗e−1 − δdd∗e−1 − f(p)δdd∗e
,

and it is easy to verify that q < 1 (by (32)).

(ii) Following part (i), the inspector has a strategy that inspects in each period on Agent

i with probability no more than c
1+c

, and yields Agent i an expected payo� of f
(

c
1+c

)
. Since

23



an agent chooses A when he is inspected with probability 1
1+c

, regardless of the continuation

payo�, g
(
f
(

c
1+c

))
= 0. Since the inspector minimizes x + g(x), and g(x) ≥ 0 (see Lemma

4 (i)), the inspector is never optimal to choose an inspection strategy that yields Agent i a

payo� greater than f
(

c
1+c

)
.

A.4 Proof of Proposition 4

(i) First note that if an agent chooses A in every period, he guarantees himself zero payo�.

Therefore g(x) ≥ 0 for every x ≥ 0. To show that g(x) is non-increasing, we �rst prove a

Lemma.

Lemma 8. Suppose the inspector has a strategy σ0 that yields v1(σ) = z and v2(σ) = b,

where z < 1
1−δ . Then for every γ ∈ (z, 1

1−δ ] there exists an inspection strategy σ̃0 of the

inspector that yields v1(σ̃) = γ and v2(σ̃) = b.

Proof. Since v1(σ) < 1
1−δ , there must exist a history ĥk−1 under which σ0(I1|ĥk−1) > 0 and

σ0(A|ĥk−1) = 1. That is, there exists a history ĥk−1 under which Agent 1 is inspected with

positive probability and he chooses A.

Now consider another inspection strategy σ′0. (i) σ′0(a0|h) = σ0(a0|h) for ∀h ∈ ∪k−1t=0 Y
t.

(ii) σ′0(I1|ĥk−1) = 0, σ′0(∅|ĥk−1) = σ0(∅|ĥk−1) + σ0(I1|ĥk−1) and σ′0(I2|ĥk−1) = σ0(I2|ĥk−1).
(iii) σ′0|(ĥk−1,∅) = σ0(∅|ĥk−1)

σ′0(∅|ĥk−1)
· σ0|(ĥk−1,∅) + σ0(I1|ĥk−1)

σ′0(∅|ĥk−1)
· σ0|(ĥk−1,A1)

and σ′0|(ĥk−1,y) = σ0|(ĥk−1,y) for

y 6= ∅. (iv) σ′0|(hk−1,y) = σ0|(hk−1,y) for every h
k−1 6= ĥk−1 and y ∈ Y .

Under σ′0, following history ĥk−1, Agent 1 is inspected with zero probability and he

chooses V. In case no one is inspected in this stage, the inspector under σ′0 plays σ0|(ĥk−1,∅)

with probability σ0(∅|ĥk−1)

σ′0(∅|ĥk−1)
, and plays σ0|(ĥk−1,A1)

with the remaining probability. It is easy

to verify that v1(σ
′) > z and v2(σ

′) = b. Denote ν = v1(σ
′|ĥr). Then any γ ∈ [z, ν] can be

supported as an equilibrium under an inspection strategy σ̃0 which randomizes between σ0

and σ′. Lemma 8 follows by applying the same argument to each history hr under which

σ0(I1|hr) > 0 and σ0(A|hr) = 1.

Let z ≥ 0 and denote ν = g(z). Suppose z′ > z. By Lemma 8, v1 = z′ and v2 = g(z) can

be supported as an equilibrium. By the de�nition of g(·), g(z′) ≤ g(z).

(ii) Suppose, on the contrary, g(x) is not convex. Then there must exist x1, x2 and

t ∈ (0, 1) such that

g
(
tx1 + (1− t)x2

)
> t · g(x1) + (1− t) · g(x2). (33)
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Let v1 = tx1 + (1 − t)x2. By the de�nition of g(·), given that Agent 1 obtains an expected

payo� of v1, there exists no strategy of the inspector that yields Agent 2 a payo� less than

g(v1).

Consider now an inspection strategy σ′0 under which the inspector uses a random device:

with probability t it turns out to be head and with the remaining probability tail. In case

the outcome is head, the inspector uses an inspection strategy that yields Agent 1 x1 and

Agent 2 g(x1); if the outcome is tail he uses an inspection strategy that yields Agent 1 x2

and Agent 2 g(x2). Under this new inspection strategy Agent 1 obtains an expected payo�

of v1, while Agent 2 obtains an expected payo� of
(
t · g(x1) + (1 − t) · g(x2)

)
, which is less

than g(v1) (by (33)), a contradiction.

(iii) Suppose v1 = 0. It can be easily veri�ed that this payo� can be supported i� in

every period the inspector inspects on Agent 1 with probability no less than 1
1+c

. Denote

p = c
1+c

. The minimum payo� for agent 2 is

g(0) = δpf(p) + δ2(1− p)pf(p) + δ3(1− p)2pf(p) + ...

= δpf(p) ·
(

1 + δ(1− p) + δ2(1− p)2 + δ3(1− p)3 + ...
)

=
1− p− cp

1− (1− p)δ
=

1− c2

1 + c− δ
.

(34)

This is achieved by the following strategy: in the �rst period inspects on Agent 2 with

probability c
1+c

. If Agent 2 is not inspected, start from the beginning. If Agent 2 is (inspected

and) found A, he obtains a continuation payo� of f
(

c
1+c

)
. If Agent 2 is found V, he is

inspected with probability 1 forever. To support f
(

c
1+c

)
, the inspector uses a periodic

strategy as described in the proof of Lemma 1.

We have shown that there exists an inspection strategy of the inspector under which

v1 = 0 and v2 = 1−c2
1+c−δ . Therefore g

(
1−c2
1+c−δ

)
≤ 0. Since g

(
1−c2
1+c−δ

)
≥ 0, g

(
1−c2
1+c−δ

)
= 0. This

implies that g(x) = 0 for every x ≥ 1−c2
1+c−δ (by (i)).

(iv) Suppose x ∈ [0, 1−c2
1+c−δ ) and g(x) = z. This implies that the inspector has an in-

spection strategy that yields Agent 1 a payo� of x and Agent 2 a payo� of z. Therefore

g(z) ≤ x. Suppose g(z) < x. By (i) there exists z′ < z such that g(z′) = x. This implies

that the inspector has a strategy that yields Agent 1 an expected payo� of x and Agent 2

an expected payo� of z′, z′ < z, a contradiction.
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A.5 Proof of Proposition 5

A.5.1 Case 1−c2
1+c−δ < 1

Consider �rst the case where 1−c2
1+c−δ < 1. By Proposition 4, g(x) < 1 for every x.

Moreover, since g(z) = 0 for every z ≥ 1−c2
1+c−δ , under equilibrium f

(
σ0(I1)

)
≤ 1−c2

1+c−δ < 1.

That is, under equilibrium, in a period where both agents obtain positive expected payo�s,

the maximum of these two payo�s is less than 1−c2
1+c−δ (< 1). This excludes the possibility of

giving agent 1 or 2 a reward (by not inspecting) when the other player obtains a positive

payo�, since it will have a value of 1 which is larger than the amount of the total award. In

other words, the inspector issues the rewards only when one of the agent is obtaining a zero

payo�. In addition, 1−c2
1+c−δ < 1 implies that both agents A in the �rst period (otherwise, at

least one of the agent in�icts a damage of 1 on the inspector, which exceeds 0 + 1−c2
1+c−δ ).

Lemma 9. For ∀x ∈ (0, 1−c2
1+c−δ ), v1(σ) = x and v2(σ) = g(x) can be implemented by an

inspection strategy σ0 which satis�es σ0(∅) = 0.

Proof. Suppose there exists a strategy σ̂0 under which v1(σ̂) = x, v2(σ̂) = g(x) and σ̂0(I1) +

σ̂0(I2) < 1. By Proposition 4 (ii) (convexity of g(x)),

g

(
σ̂0(I1)

σ̂0(I1) + σ̂0(∅)
v1(σ̂|A1) +

σ̂0(∅)
σ̂0(I1) + σ̂0(∅)

v1(σ̂|∅)
)

≤ σ̂0(I1)

σ̂0(I1) + σ̂0(∅)
g
(
v1(σ̂|A1)

)
+

σ̂0(∅)
σ̂0(I1) + σ̂0(∅)

g
(
v1(σ̂|∅)

)
.

(35)

Consider the following strategy σ∗0: (i) σ∗0(I1) = σ̂0(I1) + σ̂0(∅) and σ∗0(I2) = σ̂0(I2).

(ii) v1(σ
∗|A1) = σ̂0(I1)

σ̂0(I1)+σ̂0(∅)v1(σ̂|A1) + σ̂0(∅)
σ̂0(I1)+σ̂0(∅)v1(σ̂|∅) and v2(σ

∗|A1) = g
(
v1(σ

∗|A1)
)
. (iii)

σ∗0|A2 = σ̂0|A2 . Note that the existence of an inspection strategy that satis�ed (ii) follows

from Lemma 1. We next study agent 1's equilibrium action under σ∗. By (ii),

(
σ̂0(I1) + σ̂0(∅)

)
· v1(σ∗|A1) = σ̂0(I1)

≥f
(
σ̂0(I1)

)︷ ︸︸ ︷
v1(σ̂|A1) +σ̂0(∅)v1(σ̂|∅)

≥ σ̂0(I1) · f
(
σ̂0(I1)

)
> σ∗0(I1) · f

(
σ∗0(I1)

)
.

(36)

The last inequality in (36) holds because p · f(p) is decreasing in p. Therefore v1(σ
∗|A1) >

f
(
σ∗0(I1)

)
and Agent 1 A in the �rst period under σ∗. It is then easy to verify that v1(σ

∗) =

v1(σ̂) and by (35), v2(σ
∗) ≤ v2(σ̂). In the case where v2(σ

∗) < v2(σ̂), we have a contradiction

with v2(σ̂) = g(x), which implies that there exists no strategy σ̂0 that yields agent 1 and 2
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the payo� x and g(x), respectively while satisfying σ̂0(∅) > 0. If v2(σ
∗) = v2(σ̂), then we

�nd an inspection strategy σ∗0 with σ∗0(∅) = 0 and v1(σ
∗) = x, v2(σ

∗) = g(x).

Proposition 7. In the inspection strategy that satis�es Lemma 9, v1(σ|A1) = f
(
σ0(I1)

)
,

v2(σ|A1) = g
(
v1(σ|A1)

)
, v1(σ|A2) = g

(
v2(σ|A2)

)
and v2(σ|A2) = f

(
σ0(I2)

)
.

Proof. We focus on the strategy σ∗0 that is described in the proof of Lemma 9. Denote

p1 = σ∗0(I1). Since σ∗0(∅) = 0, σ∗0(I2) = 1 − p1. Let v1 = x, v2 = g(x), A = v1(σ
∗|A1),

B = v2(σ
∗|A1), C = v1(σ

∗|A2) and D = v2(σ
∗|A2). Agents' payo�s are summarized in Figure

4.

Figure 4

Since both agents A in the �rst period under equilibrium, A ≥ f(p1) and D ≥ f(1− p1).

Lemma 10. B = g(A) and C = g(D).

Proof. Since the inspector minimizes v1 + v2, v2 = g(v1). That is, given agent 1 obtains an

expected payo� v1 = 0 + δ ·
(
p1 · A + (1 − p1) · C

)
, there exists no inspection strategy that

can yields agent 2 a payo� lower than v2 = 0 + δ ·
(
p1 · B + (1− p1) ·D

)
. By the de�nition

of g(·), B ≥ g(A). If B > g(A), then the inspector has a strategy that yields agent 1 an

expected payo� of v1, and agent 2 an expected payo� of

δ ·
(
p1 · g(A) + (1− p1) ·D

)
< v2 = g(v1),

a contradiction. Therefore B = g(A). Since v1 = g(v2), by similar argument, C = g(D).

Since A = g
(
g(A)

)
= g(B), Figure 5 follows immediately from Lemma 10.

Lemma 11. For every p ∈ (0, 1),

p · g(B) + (1− p) · g(D) > g
(
p ·B + (1− p) ·D

)
, (37)
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Figure 5

and

p · g(A) + (1− p) · g(C) > g
(
p · A+ (1− p) · C

)
. (38)

Proof. By Figure 11,

v1 = δ ·
(
p1 · g(B) + (1− p1) · g(D)

)
, (39)

v2 = δ ·
(
p1 ·B + (1− p1) ·D

)
. (40)

Since v1 = g(v2), by (39) - (40),

g
(
δ ·
(
p1 ·B + (1− p1) ·D

))
= δ ·

(
p1 · g(B) + (1− p1) · g(D)

)
. (41)

In the case where v1 > 0 (as assumed in the Proposition),

δ ·
(
p1 · g(B) + (1− p1) · g(D)

)
< p1 · g(B) + (1− p1) · g(D). (42)

Since g(x) is non-increasing in x,

g
(
p1 ·B + (1− p1) ·D

)
≤ g
(
δ ·
(
p1 ·B + (1− p1) ·D

))
(43)

By (41) - (43),

p1 · g(B) + (1− p1) · g(D) > g
(
p1 ·B + (1− p1) ·D

)
. (44)

Since g(x) is (weakly) convex, by (44) inequality p ·g(B)+(1−p) ·g(D) > g
(
p ·B+(1−p) ·D

)
holds for every p ∈ (0, 1) (Formal proof?).

Since g(·) is non-increasing, by 44,

g
(
p1 · g(B) + (1− p1) · g(D)

)
< g
(
g
(
p1 ·B + (1− p1) ·D

))
.

That is,

g
(
p1 · A+ (1− p1) · C

)
< p1 · g(A) + (1− p1) · g(C).
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Lemma 12. A = f(p1).

Proof. Suppose (g(B) =)A > f(p1). Then there must exists p′ < p1 such that f(p′) = g(B).

Consider next the strategy σ̃0: (i) σ̃0(I1) = p′, σ̃0(∅) = p1 − p′ and σ̃0(I2) = 1 − p1. (ii)

σ̃0|A1 = σ̃0|∅ = σ∗0|A1 and σ̃0|A2 = σ∗0|A2 . It can be veri�ed that v1(σ̃0) = v1 and v2(σ̃0) = v2.

This strategy is summarized in Figure 6.

Figure 6

Finally, we show that there exists a strategy σ̄0 which yields agent 2 v2 and agent 1 a

payo� strictly lower than v1. Consider the strategy σ̄0: (i) σ̄0(I1) = p′ and σ̄0(I2) = 1 − p′.
(i) v2(σ̄|A1) = p1−p′

1−p′ ·B + 1−p1
1−p′ ·D and v1(σ̄|A1) = g

(
v2(σ̄|A1)

)
. Denote D′ = v2(σ̄|A1), Figure

7 summarizes this strategy.

Figure 7

To compute agent 2's expected payo� under σ̄0, we �rst analyze agent 2's action in the

�rst period.

(1− p′) ·D′ = (p1 − p′) ·B + (1− p1) ·
≥f(1−p1)︷︸︸︷
D

≥ (1− p1) · f(1− p1)

> (1− p′) · f(1− p′).

(45)

The second inequality holds because p · f(p) is decreasing in p. By (45) D′ > f(1 − p′).
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Consequently, agent 2 chooses A in the �rst period and his expected payo� is

v2(σ̄) = 0 + δ ·
(
p′ ·B + (1− p′) ·D′

)
= v2.

For agent 1, since g(B) = f(p′) (by the de�nition of p′), he chooses A in the �rst period

and obtains

v1(σ̄) = 0 + δ ·
(
p′ · g(B) + (1− p′) · g(D′)

)
. (46)

Let p̃ = p1−p′
1−p′ . Then D

′ = p̃ ·B + (1− p̃) ·D. By Lemma 11,

g(D′) < p̃ · g(B) + (1− p̃) · g(D). (47)

By (46) - (47),

v1(σ̄) < δ ·
(
p′ · g(B) + (p1 − p′) · g(B) + (1− p1) · g(D)

)
= v1,

(48)

a contradiction to v1 = g(v2).

Because of the symmetry of agents, by the similar argument we can prove that D =

f(1− p1). This �nishes the proof of Proposition 7.

Figure 8 follows immediately from Proposition 7.

Figure 8

For every x ∈ (0, 1−c2
1+c−δ ),

x = 0 + δ ·
(
p1 · f(p1) + (1− p1) · g

(
f(1− p1)

))
, (49)

g(x) = 0 + δ ·
(
p1 · g

(
f(p1)

)
+ (1− p1) · f(1− p1)

)
. (50)
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Denote w(p) = p · f(p) + (1− p) · g
(
f(1− p)

)
. Note that w(p) is (strictly) decreasing in p

for p ∈ [ c
1+c

, 1
1+c

]. Therefore the p1 that solves (49) is p
∗
1 = w−1

(
x
δ

)
. This �nishes the proof

of Proposition 5 for 1−c2
1+c−δ < 1.

A.5.2 Case 1−c2
1+c−δ ≥ 1

Consider next the case where 1−c2
1+c−δ ≥ 1. In this case, we need to take into account the

possibility that the inspector may bene�t from issuing a reward to an agent before the other

agent's payo� reaches zero.

Lemma 13. When agent 1 and 2's payo�s are x ∈ [0, 1−c2
1+c−δ ] and g(x), respectively, the

inspector should deter at least one agent from V in the current period.

Proof. Suppose, on the contrary, the inspector is best o� inspecting on both agents with zero

probability. Note �rst that y ∈ [0, 1−c2
1+c−δ ]. Then in the current period both agents obtain 1,

and in the next period agent 1 and 2 obtains x−1
δ

and y−1
δ
, respectively.

Since x < 1
1−δ and y <

1
1−δ , x >

x−1
δ

and y > y−1
δ
. Since g(·) is non-increasing, g

(
x−1
δ

)
≥

g(x) = y > y−1
δ
. Consequently, g

(
x−1
δ

)
> y−1

δ
, a contradiction to the de�nition of g(·).

Proposition 8. When agent 1 and 2's payo�s are x ∈ [0, 1−c2
1+c−δ ] and g(x), respectively, the

inspector deters both agents from V in the current period.

Proof. If x < 1 and g(x) < 1, Proposition 8 is straightforward since letting an agent chooses

V yields him an expected payo� of 1 (which exceeds both agents payo�s). We next consider

the case where at least one of the agent's payo� is no less than 1. W.l.o.g. let g(x) ≥ 1. By

Lemma 13, we only need to compare the inspector's payo� when he deters both agents from

V and when he deters only one agent from V .

If the inspector deters both agents from V , the best he can do is (by similar arguments

as in Proposition 7) to choose p1 (the probability to inspect on agent 1) to be the solution of

x = 0 + δ ·
(
p1 · f(p1) + (1− p1) · g

(
f(1− p1)

))
. (51)

Agent 2's expected payo� in this case (denoted by y1) is

y1 = 0 + δ ·
(
p1 · g

(
f(p1)

)
+ (1− p1) · f(1− p1)

)
. (52)

Consider next the case where the inspector deters only agent 1 from Violating (therefore

letting agent 2 to violate). This can be done by inspecting on agent 1 with probability 1.

Then in the current period agent 1 obtains zero and agent 2 obtains 1. In the next period,
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agent 1 obtains an expected payo� of x
δ
. To minimize agent 2's expected payo� in the �rst

period, his expected payo� in the next period should be g
(
x
δ

)
. Agent 2's payo� in the �rst

period is

y2 = 1 + δ · g
(x
δ

)
. (53)

We next compare the value of y1 and y2. By (51), x
δ

= p1 · f(p1) + (1− p1) · g
(
f(1− p1)

)
.

y2 − y1 = 1+δ · g
(
p1 · f(p1) + (1− p1) · g

(
f(1− p1)

))
−δ ·

(
p1 · g

(
f(p1)

)
+ (1− p1) · f(1− p1)

) (54)

Then

y2 − y1 = 1− δ · Z, (55)

where

Z = p1 · g
(
f(p1)

)
+ (1− p1) · f(1− p1)− g

(
p1 · f(p1) + (1− p1) · g

(
f(1− p1)

))
. (56)

We next show that Z < 1
δ
. Since f(p1) ≥ g

(
f(1− p1)

)
,

f(p1) ≥ p1 · f(p1) + (1− p1) · g
(
f(1− p1)

)
.

Therefore

p1 · g
(
f(p1)

)
< g
(
f(p1)

)
≤ g
(
p1 · f(p1) + (1− p1) · g

(
f(1− p1)

))
. (57)

By (10),

(1− p1) · f(1− p1) =
1

δ
− (1 + c)(1− p1)

δ
<

1

δ
. (58)

By (56) - (58), Z < 1
δ
. By (55), y2 > y1. Consequently, the strategy that deters both agents

from V yields the inspector a better payo� compared with the strategy that deters only

agent 1 from V . Since y = g
(
g(y)

)
= g(x), by similar arguments, it is also better than the

strategy that deters only agent 2 from V . Since Lemma 13 already shown that it is never

optimal to let both agents to violate, Proposition 8 follows.

A.6 Proof of Corollary 5

By Proposition ??, A ≥ f(p2). Since v1 = f(p2) and v2 = f(1 − p2) can be easily

implemented as an equilibrium outcome, g
(
f(1 − p2)

)
< f(p2) ≤ A. By(49), A > x.
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Similarly, g(A) ≤ g
(
f(p2)

)
< f(1 − p2) and by (50) f(1 − p2) > g(x). This proves (i) and

(iii) of Proposition 2.

(ii) Suppose, on the contrary, g
(
f(1−p2)

)
≥ x. Then f(1−p2) = g

(
g
(
f(1−p2)

))
≤ g(x),

contradiction to (iii).

(iv) Suppose, on the contrary, g(A) ≥ g(x). Then g(g(A)) ≤ g(g(x)), namely A ≤ x,

contradiction to (i).

A.7 Proof of Proposition 6

(i) Denote x = v1(σ). Clearly v2(σ) = g(x) (by the de�nition of g(·)). The inspector

minx≥0 x + g(x). Since g(x) is convex, g′′(x) > 0 and the inspector chooses x∗ under which

g′(x)|x=x∗ = −1. By the properties of g(x), it can be easily veri�ed that g(x∗) = x∗.

(ii) Denote p1 = σ0(I1) and w(p) = p · f(p) + (1 − p) · g
(
f(1 − p)

)
. Note that w(p) is

decreasing in p. It can be easily veri�ed that v1(σ) = w(p1) and v2(σ) = w(1 − p1). Since

w(p1) = w(1− p1), p1 = 0.5.

A.8 Three-State Mechanism (Greenberg (1984))

In this section we compute the inspector's optimal payo� if he follows the state-dependent

inspection mechanism proposed by Greenberg (1984). Note that Greenberg (1984) charac-

terized the optimal inspection strategy when players do not discount future payo�s, while

kept silence on the optimal inspection scheme even within their own model.

As proposed by Greenberg, there are three states: N (Neutral), R (Reward), and P

(Punishment). The probability of being inspected in every state, as well as into which state

will an individuals move if he is being inspected and (i)found A, (ii) found V.

Figure 9: Optimal Inspection Strategy for Case c = 0.7 and δ = 0.9

Under this framework, the inspector maximized his expected payo� by choosing pR and

pN , while guarantee that players in N choose A and players in R choose V .
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We denote each player's equilibrium payo� in state N , R, and P as vNi , v
R
i , and vPi ,

respectively, i = 0, 1, 2. Since agent 1 and 2 are identical, vV1 = vV2 ≡ vV for V ∈ {N,R, P}.
Consider �rst the agent in state R. His payo� is

V : pR · (−c) + (1− pR) · 1 + δ ·
(
pR · vN + (1− pR) · vR

)
;

A : 0 + δ · vR.

Since there is no cheat-free mechanism and agents A in state N , vR > 0 and pR <
1

1+c
. That

is, agents bene�t from choosing V in state R and

vR = pR · (−c) + (1− pR) · 1 + δ ·
(
pR · vN + (1− pR) · vR

)
. (59)

Consider next the agent in state N . His payo� is

V : pN · (−c) + (1− pN) · 1 + δ ·
(
pN · 0 + (1− pN) · vN

)
;

A : 0 + δ ·
(
pN · vR + (1− pN) · vN

)
.

The agent is best o� choosing A i�

pN ≥
1

1 + c+ δ · vR
, (60)

in which case he obtains

vN = 0 + δ ·
(
pN · vR + (1− pN) · vN

)
. (61)

By (59) and (61),

vR =
(δ · pN + 1− δ) · (1− c · pR − pR)

δ · pN · (1− δ) + δ · pR · (1− δ) + (1− δ)2
, (62)

vN =
δ · pN · (1− c · pR − pR)

δ · pN · (1− δ) + δ · pR · (1− δ) + (1− δ)2
(63)

Since the two agents are independent and identical, we next compute the inspector's

expected loss, from agent 1. Recall that agent 1 A in state N and he V in state R.

vR0 = −1 + δ
(
pR · vN0 + (1− pR) · vR0

)
, (64)

vN0 = 0 + δ ·
(
pN · vR0 + (1− pN) · vN0

)
. (65)
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By (64) and (65),

vR0 = − δ · pN + 1− δ
δ · pN · (1− δ) + δ · pR · (1− δ) + (1− δ)2

, (66)

vN0 = − δ · pN
δ · pN · (1− δ) + δ · pR · (1− δ) + (1− δ)2

. (67)

Since vN0 > vR0 , the inspector is best o� with putting agent 1 in state N. Therefore the

inspector chooses pN and pR to maximize vN0 . By (66), the inspector should minimize pN

and maximizes pR. By 60,

pN =
1

1 + c+ δ · vR
. (68)

Since vR is decreasing in pR (by 62), pN is increasing in pR.

For every pR ∈ (0, 1
1+c

), by solving (62) and (68) we can compute the optimal pN(pR).

Replacing the pN in (67) with pN(pR) we can �nd the optimal pR that minimizes vN0 .

It can be shown that in case c = 0.7 and δ = 0.9, pR = 0.294, pN = 0.24, and vN0 =

−3.728. The inspector's minimum loss from both agents in the Greenberg-type mechanism

is therefore 2vN0 = −7.456.
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